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LETTER TO THE EDITOR 

Supersymmetric Harry Dym type equations 

Q P Liu 
CCAST (world Laboratory), PO Box 8730, Beijing 1W080, People's Republic of China and 
Department of Mathematics, Beijiig Grad& School (65). China University of M i n g  and 
Technology, Beijing 100083, People's Republic of Chinat 

Received 9 January 1995 

Abstract. A supersymmecric version is proposed for the well known Harry Dym system. A 
general-class super Lax operator which leads to mnsistent equations is considered. 

During the past ten years or so, super extensions of integrable models have been subjected 
to much attention. The consequence of such study is that a number of well known 
integrable systems have been embedded in the context of super systems. In particular, 
we mention here the super Sine-Gordon [I], Korteweg-de Vries (mv) [ 2 4 ]  and nonlinear 
Schrodinger equations [SI and super Kadomtsev-Petviashvili hierarchy [Z], etc (see [6] for 
more references). 

We note that two types of super extensions for a given integrable system may exist, 
i.e. supersymmetric and fermionic extensions. In the KdV case, this corresponds to Manin- 
Radul's version [2] and Kupershmidt's version [4] respectively. Apart from the KdV system, 
the Harry Dym (HD) equation is also well known. Very recently, it bas been found that the HD 
equation is not just a mathematically interesting model as it possesses physical applications 
[7]. Thus, it would be interesting to construct a super analogy of the HD equation. In 
this regard, a fermionic HD model is known from Kupershmidt's work [8] while a generic 
supersymme~c HD (sm) system is still lacking to the hest of my knowledge. The aim of 
this letter is to propose such a model. 

For convenience, we fix our notation at the very beginning: denoting even variables by 
Latin letters and odd variables by Greek letters; the index ar of an operator always means 
projection to that part of the order that is greater than D' (including the term D' itself). 

Let us first recall some basic facts of the HD equation. The equation reads 

(1) 

(2) 

w - l  3 
f - p wxx, 

or 

U* = ~(UtU,,, - Iu~u ,u , z  3 '  + ?U 3 -L 2uJ. 3 

The link between them is U = w2. 
It is known that HD equation (2) has the following Lax operator: 

(3) L~ = ua 

LHD, = [P. LHDl (4) 

2 

and the Lax equation is 

t Mailing address. 
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where P = (L$)>+ 
Our candidate for the supersymmetric Hany Dym(sm) equation is: 

ut = ($Asu - ~ u l u , u ; +  &U-”;) + ~uia(Du, , )  - $&axx - Z U  3 - 5  su,a(ou) 2 

+ 6 u - L X ( D u )  ++-lu,az(Du) - ; u - ~ u x a ( o u J  - ;ui,,(D,) 
+ &4 3 -2 .u,a(Da)(Du) - ;u -~a(Dax) (Du)  + ;u-:aaxu, 

at = p ~ a X ,  1 ’  + ;ufa(Da,,) + %U 3 -1 1 u p X  2 - ;u iuxxaz - p 9 -> lu,a(Da) 2 

+%U 3 -1 w,,a(Da) + xu 3 -?  ~u,az(Da) - Hu2ax*(Da) 3 1  

+ &u-luxa(Du)ax - ~ g U  3 -1 ‘n(Du,)ax + & u - i u , a ( D ~ ) ~  

+ &u-ia(Du)ax(oa) - +&(Da)(DaJ 

(5) 

where D = 08 -F 80, U is a super even variable and a is a super odd variable. Since the 
system is formulated in superderivative and super fields, the supersymmeby is manifest. 
If we set the odd field variable a to zero, we obtain the HD equation (2), thus system (5) 
deserves the name of sHD. 

System (5) has the following Lax representation: 

L, = [P, LI (6) 
where L = ua2 + aaD, and 

P = ( L $ > ~  ‘, = J a 3  + qu+aa2D+ (iuiu.. + ;u-ia(ou)) a2 

+ (qufax + ;U-h(oa)) ao. 
Noticing that the sHD system can be reformulated in Lax form, we see that this type of 

representation is non-standard in the Kupershmidt sense [9] (see also Kiso [lo]). A detailed 
presentation of the non-standard Lax representation can be. found in [Ill.  This prompted 
us to. consider the more general operator: 

L = +aaD + va + ,m + W .  (7) 
Taking L as a Lax operator, we may consh’uct integrable systems by means of the fractional 
power method. It is not difficult to verify that the following four cases occur. 

Case 1: 

L, = t(L%rJ, LI. (8) 

The standard argument shows that the system is consistent: since [(Lf), ,L] = 
-[(Lt),o, L], the right-hand side of (8) is a differential operator of form A8 + yD + B .  
Thus, we may set U = 1,a = 0. However, this implies U = 0 and we have the Manin-Radul 
case [Z, 31. 

Case 2: 

~ 

L = tw+>,, LI. (9) 

The same argument leads to the conclusion: we may set U = 1, a = 0. Thus, here we have 
a system of three equations. It is easy to see that we may further set w = 0. This last case 
was noticed by Inami and Kanno [6]. 

Case 3: 

Lz = [ ( L b Z ,  LI. (10) 
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The general case will lead to a system involving five fields. However, we may have a 
subsystem which only has three fields.. 

Case 4 

Lt = [(Lf)2% LI. (11) 

As above, this system involves all five fields. A reduction gives us the SKI system (5). 

Remark 1. In the pure bosonic case, we only have three cases which correspond to the ~ d v ,  
MKW and HD systems respectively [lo, 111. 

Remark 2. A simple calculation shows that the next one L, = [(L!)>4, L] will not lead to 
any consistent system. Thus, here we have only four cases. 

For a general even-order differential operator 

we may consider the following Lax equation 

L,=[(L$>,,LI r=0,1,2,3.  (13) 

The r = 0, 1 cases are considered in [I21 and [6] respectively. It is pointed out that one 
may set the fields U, = a, = U.-I = 0 to zero in the case r = 0 and U. = an = UO = 0 in 
the case r = 1. When r = 2 and r = 3, all the field variables can be taken as dynamical 
variables. However, the following reductions or reshictions are feasible: ug = 0, a, = 0 
for r = 2 case and u1 = uo = 0 , w j  = 0 for the case r = 3. 

Systems (13) are integrable in the sense that they consist of commuting flows. The 
proof of this statement is not difficult: the first two cases are proved in the cited references. 
The proof for the last two cases follows from the standard argument. 

We conclude this letter with the following remarks. 
(i) We see that for operator (E) ,  we have the four cases mentioned above. This 

phenomenon is based on the following algebraic decompositions: 

(ii) It would be interesting to study the Hamiltonian structures of our system sHD. We 
know that the HD equation is not only Hamiltonian but. bi-Hamiltonian. We suspect that 
this is also the case for the 5HD. 

(iii) It has been proved that the cases r = 0 and r = 1 are gauge related to each other 
[6]. It is important to study the relationship between the r = 1, r = 2 and r = 3 cases. 

(iv) We may construct the flows in terms of Sato's approach. The candidate for the 
pseudo-differential operator is L = uoa + apD + . . .. 

(v) In a recent paper [13], Darboux transformations for the sKdV are constructed. The 
same consideration will be interesting for the general cases. 

I should like to thank Boris Kupershmidt for communications on the sHD equation. It is my 
pleasure to thank the referee for useful comments. This work is supported by the National 
Natural Science Foundation of China 
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